Steady state thermal analysis#

This example problem demonstrates the use of a simple steady-state thermal analysis to determine the temperatures, thermal gradients, heat flow rates, and heat fluxes that are caused by thermal loads that do not vary over time. A steady-state thermal analysis calculates the effects of steady thermal loads on a system or component, in this example, a long bar model.

Import necessary libraries#

import os

from PIL import Image
import ansys.mechanical.core as mech
from ansys.mechanical.core.examples import delete_downloads, download_file
from matplotlib import image as mpimg
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation

Embed mechanical and set global variables

app = mech.App(version=241)
globals().update(mech.global_variables(app, True))
print(app)

cwd = os.path.join(os.getcwd(), "out")


def display_image(image_name):
    plt.figure(figsize=(16, 9))
    plt.imshow(mpimg.imread(os.path.join(cwd, image_name)))
    plt.xticks([])
    plt.yticks([])
    plt.axis("off")
    plt.show()
Ansys Mechanical [Ansys Mechanical Enterprise]
Product Version:241
Software build date: 11/27/2023 10:24:20

Configure graphics for image export#

ExtAPI.Graphics.Camera.SetSpecificViewOrientation(ViewOrientationType.Iso)
ExtAPI.Graphics.Camera.SetFit()
image_export_format = GraphicsImageExportFormat.PNG
settings_720p = Ansys.Mechanical.Graphics.GraphicsImageExportSettings()
settings_720p.Resolution = GraphicsResolutionType.EnhancedResolution
settings_720p.Background = GraphicsBackgroundType.White
settings_720p.Width = 1280
settings_720p.Height = 720
settings_720p.CurrentGraphicsDisplay = False

Download and import geometry#

Download the geometry file.

geometry_path = download_file("LONGBAR.x_t", "pymechanical", "embedding")

Import the geometry

geometry_import_group = Model.GeometryImportGroup
geometry_import = geometry_import_group.AddGeometryImport()
geometry_import_format = (
    Ansys.Mechanical.DataModel.Enums.GeometryImportPreference.Format.Automatic
)
geometry_import_preferences = Ansys.ACT.Mechanical.Utilities.GeometryImportPreferences()
geometry_import_preferences.ProcessNamedSelections = True
geometry_import.Import(
    geometry_path, geometry_import_format, geometry_import_preferences
)

ExtAPI.Graphics.Camera.SetFit()
ExtAPI.Graphics.ExportImage(
    os.path.join(cwd, "geometry.png"), image_export_format, settings_720p
)
display_image("geometry.png")
steady state thermal analysis

Add steady state thermal analysis#

Model.AddSteadyStateThermalAnalysis()
ExtAPI.Application.ActiveUnitSystem = MechanicalUnitSystem.StandardMKS
STAT_THERM = DataModel.Project.Model.Analyses[0]
MODEL = DataModel.Project.Model
CS = MODEL.CoordinateSystems
LCS1 = CS.AddCoordinateSystem()
LCS1.OriginX = Quantity("0 [m]")

LCS2 = CS.AddCoordinateSystem()
LCS2.OriginX = Quantity("0 [m]")
LCS2.PrimaryAxisDefineBy = CoordinateSystemAlignmentType.GlobalY

Create named selections and construction geometry#

Create named selections

FACE1 = DataModel.Project.Model.AddNamedSelection()
FACE1.ScopingMethod = GeometryDefineByType.Worksheet
FACE1.Name = "Face1"
GEN_CRT1 = FACE1.GenerationCriteria
CRT1 = Ansys.ACT.Automation.Mechanical.NamedSelectionCriterion()
CRT1.Active = True
CRT1.Action = SelectionActionType.Add
CRT1.EntityType = SelectionType.GeoFace
CRT1.Criterion = SelectionCriterionType.LocationZ
CRT1.Operator = SelectionOperatorType.Equal
CRT1.Value = Quantity("20 [m]")
GEN_CRT1.Add(CRT1)
FACE1.Activate()
FACE1.Generate()

FACE2 = DataModel.Project.Model.AddNamedSelection()
FACE2.ScopingMethod = GeometryDefineByType.Worksheet
FACE2.Name = "Face2"
GEN_CRT2 = FACE2.GenerationCriteria
CRT1 = Ansys.ACT.Automation.Mechanical.NamedSelectionCriterion()
CRT1.Active = True
CRT1.Action = SelectionActionType.Add
CRT1.EntityType = SelectionType.GeoFace
CRT1.Criterion = SelectionCriterionType.LocationZ
CRT1.Operator = SelectionOperatorType.Equal
CRT1.Value = Quantity("0 [m]")
GEN_CRT2.Add(CRT1)
FACE2.Activate()
FACE2.Generate()

FACE3 = DataModel.Project.Model.AddNamedSelection()
FACE3.ScopingMethod = GeometryDefineByType.Worksheet
FACE3.Name = "Face3"
GEN_CRT3 = FACE3.GenerationCriteria
CRT1 = Ansys.ACT.Automation.Mechanical.NamedSelectionCriterion()
CRT1.Active = True
CRT1.Action = SelectionActionType.Add
CRT1.EntityType = SelectionType.GeoFace
CRT1.Criterion = SelectionCriterionType.LocationX
CRT1.Operator = SelectionOperatorType.Equal
CRT1.Value = Quantity("1 [m]")
GEN_CRT3.Add(CRT1)
CRT2 = Ansys.ACT.Automation.Mechanical.NamedSelectionCriterion()
CRT2.Active = True
CRT2.Action = SelectionActionType.Filter
CRT2.EntityType = SelectionType.GeoFace
CRT2.Criterion = SelectionCriterionType.LocationY
CRT2.Operator = SelectionOperatorType.Equal
CRT2.Value = Quantity("2 [m]")
GEN_CRT3.Add(CRT2)
CRT3 = Ansys.ACT.Automation.Mechanical.NamedSelectionCriterion()
CRT3.Active = True
CRT3.Action = SelectionActionType.Filter
CRT3.EntityType = SelectionType.GeoFace
CRT3.Criterion = SelectionCriterionType.LocationZ
CRT3.Operator = SelectionOperatorType.Equal
CRT3.Value = Quantity("12 [m]")
GEN_CRT3.Add(CRT3)
CRT4 = Ansys.ACT.Automation.Mechanical.NamedSelectionCriterion()
CRT4.Active = True
CRT4.Action = SelectionActionType.Add
CRT4.EntityType = SelectionType.GeoFace
CRT4.Criterion = SelectionCriterionType.LocationZ
CRT4.Operator = SelectionOperatorType.Equal
CRT4.Value = Quantity("4.5 [m]")
GEN_CRT3.Add(CRT4)
CRT5 = Ansys.ACT.Automation.Mechanical.NamedSelectionCriterion()
CRT5.Active = True
CRT5.Action = SelectionActionType.Filter
CRT5.EntityType = SelectionType.GeoFace
CRT5.Criterion = SelectionCriterionType.LocationY
CRT5.Operator = SelectionOperatorType.Equal
CRT5.Value = Quantity("2 [m]")
GEN_CRT3.Add(CRT5)
FACE3.Activate()
FACE3.Generate()

BODY1 = DataModel.Project.Model.AddNamedSelection()
BODY1.ScopingMethod = GeometryDefineByType.Worksheet
BODY1.Name = "Body1"
BODY1.GenerationCriteria.Add(None)
BODY1.GenerationCriteria[0].EntityType = SelectionType.GeoFace
BODY1.GenerationCriteria[0].Criterion = SelectionCriterionType.LocationZ
BODY1.GenerationCriteria[0].Operator = SelectionOperatorType.Equal
BODY1.GenerationCriteria[0].Value = Quantity("1 [m]")
BODY1.GenerationCriteria.Add(None)
BODY1.GenerationCriteria[1].EntityType = SelectionType.GeoFace
BODY1.GenerationCriteria[1].Criterion = SelectionCriterionType.LocationZ
BODY1.GenerationCriteria[1].Operator = SelectionOperatorType.Equal
BODY1.GenerationCriteria[1].Value = Quantity("1 [m]")
BODY1.Generate()

Create construction geometry

CONST_GEOM = MODEL.AddConstructionGeometry()
Path = CONST_GEOM.AddPath()
Path.StartYCoordinate = Quantity(2, "m")
Path.StartZCoordinate = Quantity(20, "m")
Path.StartZCoordinate = Quantity(20, "m")
Path.EndXCoordinate = Quantity(2, "m")
SURF = CONST_GEOM.AddSurface()
SURF.CoordinateSystem = LCS2
CONST_GEOM.UpdateAllSolids()

Define boundary condition and add results#

Add temperature boundary conditions

TEMP = STAT_THERM.AddTemperature()
TEMP.Location = FACE1
TEMP.Magnitude.Output.DiscreteValues = [Quantity("22[C]"), Quantity("30[C]")]

TEMP2 = STAT_THERM.AddTemperature()
TEMP2.Location = FACE2
TEMP2.Magnitude.Output.DiscreteValues = [Quantity("22[C]"), Quantity("60[C]")]

TEMP.Magnitude.Inputs[0].DiscreteValues = [
    Quantity("0 [sec]"),
    Quantity("1 [sec]"),
    Quantity("2 [sec]"),
]
TEMP.Magnitude.Output.DiscreteValues = [
    Quantity("22[C]"),
    Quantity("30[C]"),
    Quantity("40[C]"),
]

TEMP2.Magnitude.Inputs[0].DiscreteValues = [
    Quantity("0 [sec]"),
    Quantity("1 [sec]"),
    Quantity("2 [sec]"),
]
TEMP2.Magnitude.Output.DiscreteValues = [
    Quantity("22[C]"),
    Quantity("50[C]"),
    Quantity("80[C]"),
]

Add radiation

RAD = STAT_THERM.AddRadiation()
RAD.Location = FACE3
RAD.AmbientTemperature.Inputs[0].DiscreteValues = [
    Quantity("0 [sec]"),
    Quantity("1 [sec]"),
    Quantity("2 [sec]"),
]
RAD.AmbientTemperature.Output.DiscreteValues = [
    Quantity("22[C]"),
    Quantity("30[C]"),
    Quantity("40[C]"),
]
RAD.Correlation = RadiationType.SurfaceToSurface

Analysis settings

ANLYS_SET = STAT_THERM.AnalysisSettings
ANLYS_SET.NumberOfSteps = 2
ANLYS_SET.CalculateVolumeEnergy = True

STAT_THERM.Activate()
ExtAPI.Graphics.Camera.SetFit()
ExtAPI.Graphics.ExportImage(
    os.path.join(cwd, "BC_steadystate.png"), image_export_format, settings_720p
)
display_image("BC_steadystate.png")
steady state thermal analysis

Add results#

Temperature

STAT_THERM_SOLN = DataModel.Project.Model.Analyses[0].Solution
TEMP_RST = STAT_THERM_SOLN.AddTemperature()
TEMP_RST.By = SetDriverStyle.MaximumOverTime


TEMP_RST2 = STAT_THERM_SOLN.AddTemperature()
TEMP_RST2.Location = BODY1

TEMP_RST3 = STAT_THERM_SOLN.AddTemperature()
TEMP_RST3.Location = Path

TEMP_RST4 = STAT_THERM_SOLN.AddTemperature()
TEMP_RST4.Location = SURF

Total and directional heat flux

TOT_HFLUX = STAT_THERM_SOLN.AddTotalHeatFlux()
DIR_HFLUX = STAT_THERM_SOLN.AddTotalHeatFlux()
DIR_HFLUX.ThermalResultType = TotalOrDirectional.Directional
DIR_HFLUX.NormalOrientation = NormalOrientationType.ZAxis

LCS2.PrimaryAxisDefineBy = CoordinateSystemAlignmentType.GlobalZ
DIR_HFLUX.CoordinateSystem = LCS2
DIR_HFLUX.DisplayOption = ResultAveragingType.Averaged

Thermal error

THERM_ERROR = STAT_THERM_SOLN.AddThermalError()

Temperature probe

TEMP_PROBE = STAT_THERM_SOLN.AddTemperatureProbe()
TEMP_PROBE.GeometryLocation = FACE1
TEMP_PROBE.LocationMethod = LocationDefinitionMethod.CoordinateSystem
TEMP_PROBE.CoordinateSystemSelection = LCS2

Heat flux probe

HFLUX_PROBE = STAT_THERM_SOLN.AddHeatFluxProbe()
HFLUX_PROBE.LocationMethod = LocationDefinitionMethod.CoordinateSystem
HFLUX_PROBE.CoordinateSystemSelection = LCS2
HFLUX_PROBE.ResultSelection = ProbeDisplayFilter.ZAxis

Reaction probe

ANLYS_SET.NodalForces = OutputControlsNodalForcesType.Yes
REAC_PROBE = STAT_THERM_SOLN.AddReactionProbe()
REAC_PROBE.LocationMethod = LocationDefinitionMethod.GeometrySelection
REAC_PROBE.GeometryLocation = FACE1

Radiation probe

Rad_Probe = STAT_THERM_SOLN.AddRadiationProbe()
Rad_Probe.BoundaryConditionSelection = RAD
Rad_Probe.ResultSelection = ProbeDisplayFilter.All

Solve#

STAT_THERM_SOLN.Solve(True)

Messages#

Messages = ExtAPI.Application.Messages
if Messages:
    for message in Messages:
        print(f"[{message.Severity}] {message.DisplayString}")
else:
    print("No [Info]/[Warning]/[Error] Messages")

# Display results
# ~~~~~~~~~~~~~~~
# Total body temperature

Tree.Activate([TEMP_RST])
ExtAPI.Graphics.Camera.SetFit()
ExtAPI.Graphics.ExportImage(
    os.path.join(cwd, "temp.png"), image_export_format, settings_720p
)
display_image("temp.png")
steady state thermal analysis
[Warning] A result is scoped to a construction geometry object which might have points shared with multiple bodies. Please check the results.   Object=Surface   Result=Temperature 4

Temperature on part of the body

Tree.Activate([TEMP_RST2])
ExtAPI.Graphics.Camera.SetFit()
ExtAPI.Graphics.ExportImage(
    os.path.join(cwd, "temp2.png"), image_export_format, settings_720p
)
display_image("temp2.png")
steady state thermal analysis

Temperature distribution along the specific path

Tree.Activate([TEMP_RST3])
ExtAPI.Graphics.Camera.SetFit()
ExtAPI.Graphics.ExportImage(
    os.path.join(cwd, "temp3.png"), image_export_format, settings_720p
)
display_image("temp3.png")
steady state thermal analysis

Temperature of bottom surface

Tree.Activate([TEMP_RST4])
ExtAPI.Graphics.Camera.SetFit()
ExtAPI.Graphics.ExportImage(
    os.path.join(cwd, "temp4.png"), image_export_format, settings_720p
)
display_image("temp4.png")
steady state thermal analysis

Export directional heat flux animation#

Directional heat flux

Tree.Activate([DIR_HFLUX])
animation_export_format = (
    Ansys.Mechanical.DataModel.Enums.GraphicsAnimationExportFormat.GIF
)
settings_720p = Ansys.Mechanical.Graphics.AnimationExportSettings()
settings_720p.Width = 1280
settings_720p.Height = 720

DIR_HFLUX.ExportAnimation(
    os.path.join(cwd, "DirectionalHeatFlux.gif"), animation_export_format, settings_720p
)
gif = Image.open(os.path.join(cwd, "DirectionalHeatFlux.gif"))
fig, ax = plt.subplots(figsize=(16, 9))
ax.axis("off")
img = ax.imshow(gif.convert("RGBA"))


def update(frame):
    gif.seek(frame)
    img.set_array(gif.convert("RGBA"))
    return [img]


ani = FuncAnimation(
    fig, update, frames=range(gif.n_frames), interval=100, repeat=True, blit=True
)
plt.show()

Display output file from solve#

def write_file_contents_to_console(path):
    """Write file contents to console."""
    with open(path, "rt") as file:
        for line in file:
            print(line, end="")


solve_path = STAT_THERM.WorkingDir
solve_out_path = os.path.join(solve_path, "solve.out")
if solve_out_path:
    write_file_contents_to_console(solve_out_path)
 Ansys Mechanical Enterprise


 *------------------------------------------------------------------*
 |                                                                  |
 |   W E L C O M E   T O   T H E   A N S Y S (R)  P R O G R A M     |
 |                                                                  |
 *------------------------------------------------------------------*




 ***************************************************************
 *         ANSYS MAPDL 2024 R1          LEGAL NOTICES          *
 ***************************************************************
 *                                                             *
 * Copyright 1971-2024 Ansys, Inc.  All rights reserved.       *
 * Unauthorized use, distribution or duplication is            *
 * prohibited.                                                 *
 *                                                             *
 * Ansys is a registered trademark of Ansys, Inc. or its       *
 * subsidiaries in the United States or other countries.       *
 * See the Ansys, Inc. online documentation or the Ansys, Inc. *
 * documentation CD or online help for the complete Legal      *
 * Notice.                                                     *
 *                                                             *
 ***************************************************************
 *                                                             *
 * THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION       *
 * INCLUDE TRADE SECRETS AND CONFIDENTIAL AND PROPRIETARY      *
 * PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS.    *
 * The software products and documentation are furnished by    *
 * Ansys, Inc. or its subsidiaries under a software license    *
 * agreement that contains provisions concerning               *
 * non-disclosure, copying, length and nature of use,          *
 * compliance with exporting laws, warranties, disclaimers,    *
 * limitations of liability, and remedies, and other           *
 * provisions.  The software products and documentation may be *
 * used, disclosed, transferred, or copied only in accordance  *
 * with the terms and conditions of that software license      *
 * agreement.                                                  *
 *                                                             *
 * Ansys, Inc. is a UL registered                              *
 * ISO 9001:2015 company.                                      *
 *                                                             *
 ***************************************************************
 *                                                             *
 * This product is subject to U.S. laws governing export and   *
 * re-export.                                                  *
 *                                                             *
 * For U.S. Government users, except as specifically granted   *
 * by the Ansys, Inc. software license agreement, the use,     *
 * duplication, or disclosure by the United States Government  *
 * is subject to restrictions stated in the Ansys, Inc.        *
 * software license agreement and FAR 12.212 (for non-DOD      *
 * licenses).                                                  *
 *                                                             *
 ***************************************************************

 2024 R1

 Point Releases and Patches installed:

 Ansys, Inc. License Manager 2024 R1
 Structures 2024 R1
 LS-DYNA 2024 R1
 Mechanical Products 2024 R1


          *****  MAPDL COMMAND LINE ARGUMENTS  *****
  BATCH MODE REQUESTED (-b)    = NOLIST
  INPUT FILE COPY MODE (-c)    = COPY
  DISTRIBUTED MEMORY PARALLEL REQUESTED
       4 PARALLEL PROCESSES REQUESTED WITH SINGLE THREAD PER PROCESS
    TOTAL OF     4 CORES REQUESTED
  INPUT FILE NAME              = /github/home/.mw/Application Data/Ansys/v241/AnsysMech4503/Project_Mech_Files/SteadyStateThermal/dummy.dat
  OUTPUT FILE NAME             = /github/home/.mw/Application Data/Ansys/v241/AnsysMech4503/Project_Mech_Files/SteadyStateThermal/solve.out
  START-UP FILE MODE           = NOREAD
  STOP FILE MODE               = NOREAD

 RELEASE= 2024 R1              BUILD= 24.1      UP20231106   VERSION=LINUX x64
 CURRENT JOBNAME=file0  07:42:22  MAY 06, 2024 CP=      0.233


 PARAMETER _DS_PROGRESS =     999.0000000

 /INPUT FILE= ds.dat  LINE=       0



 *** NOTE ***                            CP =       0.302   TIME= 07:42:22
 The /CONFIG,NOELDB command is not valid in a distributed memory
 parallel solution.  Command is ignored.

 *GET  _WALLSTRT  FROM  ACTI  ITEM=TIME WALL  VALUE=  7.70611111

 TITLE=
 --Steady-State Thermal


 SET PARAMETER DIMENSIONS ON  _WB_PROJECTSCRATCH_DIR
  TYPE=STRI  DIMENSIONS=      248        1        1

 PARAMETER _WB_PROJECTSCRATCH_DIR(1) = /github/home/.mw/Application Data/Ansys/v241/AnsysMech4503/Project_Mech_Files/SteadyStateThermal/

 SET PARAMETER DIMENSIONS ON  _WB_SOLVERFILES_DIR
  TYPE=STRI  DIMENSIONS=      248        1        1

 PARAMETER _WB_SOLVERFILES_DIR(1) = /github/home/.mw/Application Data/Ansys/v241/AnsysMech4503/Project_Mech_Files/SteadyStateThermal/

 SET PARAMETER DIMENSIONS ON  _WB_USERFILES_DIR
  TYPE=STRI  DIMENSIONS=      248        1        1

 PARAMETER _WB_USERFILES_DIR(1) = /github/home/.mw/Application Data/Ansys/v241/AnsysMech4503/Project_Mech_Files/UserFiles/
 --- Data in consistent MKS units. See Solving Units in the help system for more

 MKS UNITS SPECIFIED FOR INTERNAL
  LENGTH        (l)  = METER (M)
  MASS          (M)  = KILOGRAM (KG)
  TIME          (t)  = SECOND (SEC)
  TEMPERATURE   (T)  = CELSIUS (C)
  TOFFSET            = 273.0
  CHARGE        (Q)  = COULOMB
  FORCE         (f)  = NEWTON (N) (KG-M/SEC2)
  HEAT               = JOULE (N-M)

  PRESSURE           = PASCAL (NEWTON/M**2)
  ENERGY        (W)  = JOULE (N-M)
  POWER         (P)  = WATT (N-M/SEC)
  CURRENT       (i)  = AMPERE (COULOMBS/SEC)
  CAPACITANCE   (C)  = FARAD
  INDUCTANCE    (L)  = HENRY
  MAGNETIC FLUX      = WEBER
  RESISTANCE    (R)  = OHM
  ELECTRIC POTENTIAL = VOLT

 INPUT  UNITS ARE ALSO SET TO MKS

 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     07:42:22  MAY 06, 2024 CP=      0.306

 --Steady-State Thermal



          ***** MAPDL ANALYSIS DEFINITION (PREP7) *****
 *********** Nodes for the whole assembly ***********
 *********** Elements for Body 1 "Part4" ***********
 *********** Elements for Body 2 "Part3" ***********
 *********** Elements for Body 3 "Part2" ***********
 *********** Elements for Body 4 "Part1" ***********
 *********** Send User Defined Coordinate System(s) ***********
 *********** Send Materials ***********
 *********** Create Contact "Contact Region" ***********
             Real Constant Set For Above Contact Is 6 & 5
 *********** Create Contact "Contact Region 2" ***********
             Real Constant Set For Above Contact Is 8 & 7
 *********** Create Contact "Contact Region 3" ***********
             Real Constant Set For Above Contact Is 10 & 9
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Define Temperature Constraint ***********
 *********** Define Temperature Constraint ***********
 *********** Create "ToSurface(Open)" Radiation ***********
 ***************** Define Uniform Initial temperature ***************


 ***** ROUTINE COMPLETED *****  CP =         0.360


 --- Number of total nodes = 3566
 --- Number of contact elements = 200
 --- Number of spring elements = 0
 --- Number of bearing elements = 0
 --- Number of solid elements = 586
 --- Number of condensed parts = 0
 --- Number of total elements = 786

 *GET  _WALLBSOL  FROM  ACTI  ITEM=TIME WALL  VALUE=  7.70611111
 ****************************************************************************
 *************************    SOLUTION       ********************************
 ****************************************************************************

 *****  MAPDL SOLUTION ROUTINE  *****


 PERFORM A STATIC ANALYSIS
  THIS WILL BE A NEW ANALYSIS

 CONTACT INFORMATION PRINTOUT LEVEL       1

 CHECK INITIAL OPEN/CLOSED STATUS OF SELECTED CONTACT ELEMENTS
      AND LIST DETAILED CONTACT PAIR INFORMATION

 SPLIT CONTACT SURFACES AT SOLVE PHASE

    NUMBER OF SPLITTING TBD BY PROGRAM

 DO NOT SAVE ANY RESTART FILES AT ALL

 DO NOT COMBINE ELEMENT MATRIX FILES (.emat) AFTER DISTRIBUTED PARALLEL SOLUTION

 DO NOT COMBINE ELEMENT SAVE DATA FILES (.esav) AFTER DISTRIBUTED PARALLEL SOLUTION
 ****************************************************
 ******************* SOLVE FOR LS 1 OF 2 ****************

 SPECIFIED CONSTRAINT TEMP FOR PICKED NODES
 SET ACCORDING TO TABLE PARAMETER = _LOADVARI63

 SPECIFIED CONSTRAINT TEMP FOR PICKED NODES
 SET ACCORDING TO TABLE PARAMETER = _LOADVARI65

 SPECIFIED SURFACE LOAD RDSF FOR ALL PICKED ELEMENTS  LKEY = 6   KVAL = 1
     VALUES =     1.0000         1.0000         1.0000         1.0000

 SPECIFIED SURFACE LOAD RDSF FOR ALL PICKED ELEMENTS  LKEY = 6   KVAL = 2
     VALUES =     1.0000         1.0000         1.0000         1.0000

 ALL SELECT   FOR ITEM=NODE COMPONENT=
  IN RANGE         1 TO       3566 STEP          1

       3566  NODES (OF       3566  DEFINED) SELECTED BY NSEL  COMMAND.

 ALL SELECT   FOR ITEM=ELEM COMPONENT=
  IN RANGE         1 TO       1504 STEP          1

        786  ELEMENTS (OF        786  DEFINED) SELECTED BY  ESEL  COMMAND.

 SPECIFIED CONSTRAINT TEMP FOR PICKED NODES
 SET ACCORDING TO TABLE PARAMETER = _LOADVARI67

 ALL SELECT   FOR ITEM=NODE COMPONENT=
  IN RANGE         1 TO       3566 STEP          1

       3566  NODES (OF       3566  DEFINED) SELECTED BY NSEL  COMMAND.

 ALL SELECT   FOR ITEM=ELEM COMPONENT=
  IN RANGE         1 TO       1504 STEP          1

        786  ELEMENTS (OF        786  DEFINED) SELECTED BY  ESEL  COMMAND.

 PRINTOUT RESUMED BY /GOP

 USE AUTOMATIC TIME STEPPING THIS LOAD STEP

 USE       1 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM
 FOR AUTOMATIC TIME STEPPING:
   USE     10 SUBSTEPS AS A MAXIMUM
   USE      1 SUBSTEPS AS A MINIMUM

 TIME=  1.0000

 ERASE THE CURRENT DATABASE OUTPUT CONTROL TABLE.


 WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF NONE
   FOR ALL APPLICABLE ENTITIES

 WRITE NSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE RSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EANG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE VENG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE FFLU ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE CONT ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE NLOA ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE MISC ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 CONVERGENCE ON HEAT BASED ON THE NORM OF THE N-R LOAD
   WITH A TOLERANCE OF 0.1000E-03 AND A MINIMUM REFERENCE VALUE OF 0.1000E-05
   USING THE L2 NORM (CHECK THE SRSS VALUE)

 UNDER RELAXATION FOR RADIATION FLUX=   0.10000

 TOLERENCE FOR RADIOSITY FLUX=   0.00010

 USING JACOBI ITERATIVE SOLVER FOR RADIOSITY SOLUTION
 FOR 3D ENCLOSURES.
 USING GSEIDEL ITERATIVE SOLVER FOR RADIOSITY SOLUTION
 FOR 2D ENCLOSURES.

 MAXIMUM NUMBER OF ITERATIONS=  1000
 TOLERENCE FOR ITERATIVE SOLVER=   0.10000
 RELAXATION FOR ITERATIVE SOLVER=   0.10000

 HEMICUBE RESOLUTION=   10

 MIN NORMALIZED DIST BEFORE AUTO SUBDIVIDE= 1.000000000E-06

 SELECT      COMPONENT _CM67

 SELECT      ALL ELEMENTS HAVING ANY NODE IN NODAL SET.

        110 ELEMENTS (OF        786  DEFINED) SELECTED FROM
      310 SELECTED NODES BY  ESLN COMMAND.

BEFORE SYMMETRIZATION:

NUMBER OF RADIATION NODES CREATED =        115

NUMBER OF RADIOSITY SURFACE ELEMENTS CREATED =         82

AFTER SYMMETRIZATION:

FULL NUMBER OF RADIATION NODES CREATED =        115

FULL NUMBER OF RADIOSITY SURFACE ELEMENTS CREATED =        82

 ALL SELECT   FOR ITEM=NODE COMPONENT=
  IN RANGE         1 TO       3681 STEP          1

       3681  NODES (OF       3681  DEFINED) SELECTED BY NSEL  COMMAND.

 ALL SELECT   FOR ITEM=ELEM COMPONENT=
  IN RANGE         1 TO       1586 STEP          1

        868  ELEMENTS (OF        868  DEFINED) SELECTED BY  ESEL  COMMAND.

 *GET  ANSINTER_  FROM  ACTI  ITEM=INT        VALUE=  0.00000000

 *IF  ANSINTER_                         ( =   0.00000     )  NE
      0                                 ( =   0.00000     )  THEN

 *ENDIF

 *** NOTE ***                            CP =       0.538   TIME= 07:42:22
 The automatic domain decomposition logic has selected the MESH domain
 decomposition method with 4 processes per solution.

 *****  MAPDL SOLVE    COMMAND  *****

 CALCULATING VIEW FACTORS USING HEMICUBE METHOD

 RETRIEVED    1 ENCLOSURES.
 TOTAL OF       82 DEFINED ELEMENT FACES.

 # ENCLOSURE =     1 # SURFACES =    82 # NODES =   115

TIME OF CALCULATION FOR THIS ENCLOSURE =   0.182690E-01

 CHECKING VIEW FACTOR SUM

 *** NOTE ***                            CP =       0.603   TIME= 07:42:22
 Some of the rows in the viewfactor matrix have all zeros for enclosure
 1.

 VIEW FACTOR CALCULATION COMPLETE

 WRITING VIEW FACTORS TO FILE file0.vf
 VIEW FACTORS WERE WRITTEN TO FILE file0.vf

 *** WARNING ***                         CP =       0.607   TIME= 07:42:22
 Element shape checking is currently inactive.  Issue SHPP,ON or
 SHPP,WARN to reactivate, if desired.

 *** NOTE ***                            CP =       0.613   TIME= 07:42:22
 The model data was checked and warning messages were found.
  Please review output or errors file ( /github/home/.mw/Application
 Data/Ansys/v241/AnsysMech4503/Project_Mech_Files/SteadyStateThermal/fil
 le0.err ) for these warning messages.

 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     07:42:22  MAY 06, 2024 CP=      0.614

 --Steady-State Thermal



                       S O L U T I O N   O P T I O N S

   PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D
   DEGREES OF FREEDOM. . . . . . TEMP
   ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE)
   OFFSET TEMPERATURE FROM ABSOLUTE ZERO . . . . .  273.15
   GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC

 *** NOTE ***                            CP =       0.619   TIME= 07:42:22
 This nonlinear analysis defaults to using the full Newton-Raphson
 solution procedure.  This can be modified using the NROPT command.

 *** NOTE ***                            CP =       0.619   TIME= 07:42:22
 The conditions for direct assembly have been met.  No .emat or .erot
 files will be produced.

 CHECK INITIAL OPEN/CLOSED STATUS OF SELECTED CONTACT ELEMENTS
      AND LIST DETAILED CONTACT PAIR INFORMATION

      34 CONTACT ELEMENTS &      66 TARGET ELEMENTS ARE UNSELECTED FOR PREPARATION OF          SPLITTING.
       3 CONTACT PAIRS ARE UNSELECTED.

 *** NOTE ***                            CP =       0.726   TIME= 07:42:22
 The maximum number of contact elements in any single contact pair is
 25, which is smaller than the optimal domain size of 120 elements for
 the given number of CPU domains (4).  Therefore, no contact pairs are
 being split by the CNCH,DMP logic.

 BECAUSE SPLIT WAS NOT DONE FOR CONNECT REGION(S), UNSELECTED ELEMENTS ARE REVERTED (SELECTED).

 *** NOTE ***                            CP =       0.820   TIME= 07:42:22
 Symmetric Deformable- deformable contact pair identified by real
 constant set 5 and contact element type 5 has been set up.  The
 companion pair has real constant set ID 6.  Both pairs should have the
 same behavior.
 MAPDL will keep the current pair and deactivate its companion pair,
 resulting in asymmetric contact.
 Pure thermal contact is activated.
 The emissivity is defined through the material property.
 Thermal convection coefficient, environment temperature, and
  heat flux are defined using the SFE command.
 Target temperature is used for convection/radiation calculation
  for near field contact.
 Small sliding logic is assumed
 Contact detection at: Gauss integration point
 Average contact surface length               0.40000
 Average contact pair depth                   0.42857
 Average target surface length                0.66667
 Default pinball region factor PINB           0.25000
 The resulting pinball region                 0.10714
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.
 Thermal contact conductance coef. TCC         29952.
 Heat radiation is excluded.

 *** NOTE ***                            CP =       0.820   TIME= 07:42:22
 Max.  Initial penetration 3.552713679E-15 was detected between contact
 element 1331 and target element 1366.
 ****************************************


 *** NOTE ***                            CP =       0.821   TIME= 07:42:22
 Symmetric Deformable- deformable contact pair identified by real
 constant set 6 and contact element type 5 has been set up.  The
 companion pair has real constant set ID 5.  Both pairs should have the
 same behavior.
 MAPDL will deactivate the current pair and keep its companion pair,
 resulting in asymmetric contact.
 Pure thermal contact is activated.
 The emissivity is defined through the material property.
 Thermal convection coefficient, environment temperature, and
  heat flux are defined using the SFE command.
 Target temperature is used for convection/radiation calculation
  for near field contact.
 Small sliding logic is assumed
 Contact detection at: Gauss integration point
 Average contact surface length               0.66667
 Average contact pair depth                   0.71429
 Average target surface length                0.40000
 Default pinball region factor PINB           0.25000
 The resulting pinball region                 0.17857
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.
 Thermal contact conductance coef. TCC         29952.
 Heat radiation is excluded.

 *** NOTE ***                            CP =       0.821   TIME= 07:42:22
 Max.  Initial penetration 3.552713679E-15 was detected between contact
 element 1360 and target element 1316.
 ****************************************


 *** NOTE ***                            CP =       0.821   TIME= 07:42:22
 Symmetric Deformable- deformable contact pair identified by real
 constant set 7 and contact element type 7 has been set up.  The
 companion pair has real constant set ID 8.  Both pairs should have the
 same behavior.
 MAPDL will deactivate the current pair and keep its companion pair,
 resulting in asymmetric contact.
 Pure thermal contact is activated.
 The emissivity is defined through the material property.
 Thermal convection coefficient, environment temperature, and
  heat flux are defined using the SFE command.
 Target temperature is used for convection/radiation calculation
  for near field contact.
 Small sliding logic is assumed
 Contact detection at: Gauss integration point
 Average contact surface length               0.66667
 Average contact pair depth                   0.71429
 Average target surface length                0.50000
 Default pinball region factor PINB           0.25000
 The resulting pinball region                 0.17857
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.
 Thermal contact conductance coef. TCC         29952.
 Heat radiation is excluded.

 *** NOTE ***                            CP =       0.822   TIME= 07:42:22
 Max.  Initial penetration 1.776356839E-15 was detected between contact
 element 1382 and target element 1413.
 ****************************************


 *** NOTE ***                            CP =       0.822   TIME= 07:42:22
 Symmetric Deformable- deformable contact pair identified by real
 constant set 8 and contact element type 7 has been set up.  The
 companion pair has real constant set ID 7.  Both pairs should have the
 same behavior.
 MAPDL will keep the current pair and deactivate its companion pair,
 resulting in asymmetric contact.
 Pure thermal contact is activated.
 The emissivity is defined through the material property.
 Thermal convection coefficient, environment temperature, and
  heat flux are defined using the SFE command.
 Target temperature is used for convection/radiation calculation
  for near field contact.
 Small sliding logic is assumed
 Contact detection at: Gauss integration point
 Average contact surface length               0.50000
 Average contact pair depth                   0.50000
 Average target surface length                0.66667
 Default pinball region factor PINB           0.25000
 The resulting pinball region                 0.12500
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.
 Thermal contact conductance coef. TCC         29952.
 Heat radiation is excluded.

 *** NOTE ***                            CP =       0.822   TIME= 07:42:22
 Max.  Initial penetration 1.776356839E-15 was detected between contact
 element 1395 and target element 1375.
 ****************************************


 *** NOTE ***                            CP =       0.822   TIME= 07:42:22
 Symmetric Deformable- deformable contact pair identified by real
 constant set 9 and contact element type 9 has been set up.  The
 companion pair has real constant set ID 10.  Both pairs should have
 the same behavior.
 MAPDL will deactivate the current pair and keep its companion pair,
 resulting in asymmetric contact.
 Pure thermal contact is activated.
 The emissivity is defined through the material property.
 Thermal convection coefficient, environment temperature, and
  heat flux are defined using the SFE command.
 Target temperature is used for convection/radiation calculation
  for near field contact.
 Small sliding logic is assumed
 Contact detection at: Gauss integration point
 Average contact surface length               0.50000
 Average contact pair depth                   0.50000
 Average target surface length                0.40000
 Default pinball region factor PINB           0.25000
 The resulting pinball region                 0.12500
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.
 Thermal contact conductance coef. TCC         29952.
 Heat radiation is excluded.

 *** NOTE ***                            CP =       0.823   TIME= 07:42:22
 Max.  Initial penetration 4.440892099E-16 was detected between contact
 element 1442 and target element 1480.
 ****************************************


 *** NOTE ***                            CP =       0.823   TIME= 07:42:22
 Symmetric Deformable- deformable contact pair identified by real
 constant set 10 and contact element type 9 has been set up.  The
 companion pair has real constant set ID 9.  Both pairs should have the
 same behavior.
 MAPDL will keep the current pair and deactivate its companion pair,
 resulting in asymmetric contact.
 Pure thermal contact is activated.
 The emissivity is defined through the material property.
 Thermal convection coefficient, environment temperature, and
  heat flux are defined using the SFE command.
 Target temperature is used for convection/radiation calculation
  for near field contact.
 Small sliding logic is assumed
 Contact detection at: Gauss integration point
 Average contact surface length               0.40000
 Average contact pair depth                   0.40000
 Average target surface length                0.50000
 Default pinball region factor PINB           0.25000
 The resulting pinball region                 0.10000
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.
 Thermal contact conductance coef. TCC         29952.
 Heat radiation is excluded.

 *** NOTE ***                            CP =       0.824   TIME= 07:42:22
 Max.  Initial penetration 4.440892099E-16 was detected between contact
 element 1455 and target element 1426.
 ****************************************






     D I S T R I B U T E D   D O M A I N   D E C O M P O S E R

  ...Number of elements: 868
  ...Number of nodes:    3681
  ...Decompose to 4 CPU domains
  ...Element load balance ratio =     1.119


                      L O A D   S T E P   O P T I O N S

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     1
   TIME AT END OF THE LOAD STEP. . . . . . . . . .  1.0000
   AUTOMATIC TIME STEPPING . . . . . . . . . . . .    ON
      INITIAL NUMBER OF SUBSTEPS . . . . . . . . .     1
      MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . .    10
      MINIMUM NUMBER OF SUBSTEPS . . . . . . . . .     1
   MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . .    15
   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO
   TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT)
   CONVERGENCE CONTROLS
      LABEL   REFERENCE    TOLERANCE  NORM     MINREF
       HEAT    0.000       0.1000E-03   2     0.1000E-05
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT
   DATABASE OUTPUT CONTROLS
      ITEM     FREQUENCY   COMPONENT
       ALL       NONE
      NSOL        ALL
      RSOL        ALL
      EANG        ALL
      VENG        ALL
      FFLU        ALL
      CONT        ALL
      NLOA        ALL
      MISC        ALL


 SOLUTION MONITORING INFO IS WRITTEN TO FILE= file.mntr
 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS HAS BEEN MODIFIED
  TO BE, NEQIT = 1000, BY SOLUTION CONTROL LOGIC.

 RADIOSITY SOLVER CALCULATION
 ENCLOSURE NUMBER=   1
 RADIOSITY SOLVER CONVERGED AFTER   59 ITERATIONS
 TIME OF RADIOSITY SOLVER FOR ENCLOSURE=  0.406289E-02
 RAD FLUX CONVERGENCE VALUE=   1.00000     CRITERION=  0.100000E-03





            **** CENTER OF MASS, MASS, AND MASS MOMENTS OF INERTIA ****

  CALCULATIONS ASSUME ELEMENT MASS AT ELEMENT CENTROID

  TOTAL MASS =  0.62800E+06

                           MOM. OF INERTIA         MOM. OF INERTIA
  CENTER OF MASS            ABOUT ORIGIN        ABOUT CENTER OF MASS

  XC =   1.0000          IXX =   0.8453E+08      IXX =   0.2111E+08
  YC =   1.0000          IYY =   0.8453E+08      IYY =   0.2111E+08
  ZC =   10.000          IZZ =   0.1641E+07      IZZ =   0.3847E+06
                         IXY =  -0.6280E+06      IXY =  -0.1164E-09
                         IYZ =  -0.6280E+07      IYZ =  -0.1256E-03
                         IZX =  -0.6280E+07      IZX =  -0.1256E-03


  *** MASS SUMMARY BY ELEMENT TYPE ***

  TYPE      MASS
     1   94200.0
     2   314000.
     3   157000.
     4   62800.0

 Range of element maximum matrix coefficients in global coordinates
 Maximum = 2872.34701 at element 1392.
 Minimum = 23.5644444 at element 562.

   *** ELEMENT MATRIX FORMULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1       175  SOLID279      0.011   0.000064
        2       126  SOLID279      0.018   0.000145
        3       160  SOLID279      0.009   0.000055
        4       125  SOLID279      0.007   0.000057
        5        34  CONTA174      0.005   0.000155
        6        34  TARGE170      0.000   0.000003
        7        25  CONTA174      0.003   0.000139
        8        25  TARGE170      0.000   0.000003
        9        41  CONTA174      0.006   0.000137
       10        41  TARGE170      0.000   0.000003
       11        82  SURF252       0.001   0.000016
 Time at end of element matrix formulation CP = 1.1541779.
     HT FLOW CONVERGENCE VALUE=  0.1041E+05  CRITERION=   1.043

 DISTRIBUTED SPARSE MATRIX DIRECT SOLVER.
  Number of equations =        3373,    Maximum wavefront =    114

  Process memory allocated for solver              =     2.297 MB
  Process memory required for in-core solution     =     2.212 MB
  Process memory required for out-of-core solution =     1.694 MB

  Total memory allocated for solver                =     8.417 MB
  Total memory required for in-core solution       =     8.099 MB
  Total memory required for out-of-core solution   =     6.122 MB

 *** NOTE ***                            CP =       1.256   TIME= 07:42:22
 The Distributed Sparse Matrix Solver is currently running in the
 in-core memory mode.  This memory mode uses the most amount of memory
 in order to avoid using the hard drive as much as possible, which most
 often results in the fastest solution time.  This mode is recommended
 if enough physical memory is present to accommodate all of the solver
 data.
 Distributed sparse solver maximum pivot= 2717.07614 at node 1844 TEMP.
 Distributed sparse solver minimum pivot= 14.7755695 at node 2950 TEMP.
 Distributed sparse solver minimum pivot in absolute value= 14.7755695
 at node 2950 TEMP.
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=   28.00
     HT FLOW CONVERGENCE VALUE=  0.7964E-09  CRITERION=  0.6227E-01 <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1

 RADIOSITY SOLVER CALCULATION
 ENCLOSURE NUMBER=   1
 RADIOSITY SOLVER CONVERGED AFTER   48 ITERATIONS
 TIME OF RADIOSITY SOLVER FOR ENCLOSURE=  0.249100E-02
 RAD FLUX CONVERGENCE VALUE=  0.164309     CRITERION=  0.100000E-03

     HT FLOW CONVERGENCE VALUE=   4.683      CRITERION=  0.6197E-01
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1700
     HT FLOW CONVERGENCE VALUE=  0.9658E-09  CRITERION=  0.6203E-01 <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2

 RADIOSITY SOLVER CALCULATION
 ENCLOSURE NUMBER=   1
 RADIOSITY SOLVER CONVERGED AFTER    1 ITERATIONS
 TIME OF RADIOSITY SOLVER FOR ENCLOSURE=  0.457764E-04
 RAD FLUX CONVERGENCE VALUE=  0.596247E-04 CRITERION=  0.100000E-03

 RADIOSITY FLUX CONVERGED AFTER ITERATION=    3 SUBSTEP=    1

     HT FLOW CONVERGENCE VALUE=   1.620      CRITERION=  0.6314E-01
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.6831E-01
     HT FLOW CONVERGENCE VALUE=  0.8002E-09  CRITERION=  0.6316E-01 <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   3

   *** ELEMENT RESULT CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1       175  SOLID279      0.004   0.000021
        2       126  SOLID279      0.003   0.000024
        3       160  SOLID279      0.004   0.000024
        4       125  SOLID279      0.003   0.000022
        5        34  CONTA174      0.002   0.000048
        7        25  CONTA174      0.001   0.000038
        9        41  CONTA174      0.002   0.000040
       11        82  SURF252       0.001   0.000009

   *** NODAL LOAD CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1       175  SOLID279      0.002   0.000014
        2       126  SOLID279      0.002   0.000015
        3       160  SOLID279      0.002   0.000014
        4       125  SOLID279      0.002   0.000015
        5        34  CONTA174      0.000   0.000005
        7        25  CONTA174      0.000   0.000004
        9        41  CONTA174      0.000   0.000005
       11        82  SURF252       0.000   0.000004
 *** LOAD STEP     1   SUBSTEP     1  COMPLETED.    CUM ITER =      3
 *** TIME =   1.00000         TIME INC =   1.00000


 *** MAPDL BINARY FILE STATISTICS
  BUFFER SIZE USED= 16384
        0.125 MB WRITTEN ON ELEMENT SAVED DATA FILE: file0.esav
        0.500 MB WRITTEN ON ASSEMBLED MATRIX FILE: file0.full
        0.500 MB WRITTEN ON RESULTS FILE: file0.rth
 *************** Write FE CONNECTORS *********

 WRITE OUT CONSTRAINT EQUATIONS TO FILE= file.ce
 ****************************************************
 *************** FINISHED SOLVE FOR LS 1 *************
 ****************************************************
 ******************* SOLVE FOR LS 2 OF 2 ****************

 PRINTOUT RESUMED BY /GOP

 USE AUTOMATIC TIME STEPPING THIS LOAD STEP

 USE       1 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM
 FOR AUTOMATIC TIME STEPPING:
   USE     10 SUBSTEPS AS A MAXIMUM
   USE      1 SUBSTEPS AS A MINIMUM

 TIME=  2.0000

 ERASE THE CURRENT DATABASE OUTPUT CONTROL TABLE.


 WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF NONE
   FOR ALL APPLICABLE ENTITIES

 WRITE NSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE RSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EANG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE VENG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE FFLU ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE CONT ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE NLOA ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE MISC ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 CONVERGENCE ON HEAT BASED ON THE NORM OF THE N-R LOAD
   WITH A TOLERANCE OF 0.1000E-03 AND A MINIMUM REFERENCE VALUE OF 0.1000E-05
   USING THE L2 NORM (CHECK THE SRSS VALUE)

 UNDER RELAXATION FOR RADIATION FLUX=   0.10000

 TOLERENCE FOR RADIOSITY FLUX=   0.00010

 USING JACOBI ITERATIVE SOLVER FOR RADIOSITY SOLUTION
 FOR 3D ENCLOSURES.
 USING GSEIDEL ITERATIVE SOLVER FOR RADIOSITY SOLUTION
 FOR 2D ENCLOSURES.

 MAXIMUM NUMBER OF ITERATIONS=  1000
 TOLERENCE FOR ITERATIVE SOLVER=   0.10000
 RELAXATION FOR ITERATIVE SOLVER=   0.10000

 HEMICUBE RESOLUTION=   10

 MIN NORMALIZED DIST BEFORE AUTO SUBDIVIDE= 1.000000000E-06

 *****  MAPDL SOLVE    COMMAND  *****

 *** NOTE ***                            CP =       1.575   TIME= 07:42:22
 This nonlinear analysis defaults to using the full Newton-Raphson
 solution procedure.  This can be modified using the NROPT command.

 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     07:42:22  MAY 06, 2024 CP=      1.591

 --Steady-State Thermal



                      L O A D   S T E P   O P T I O N S

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     2
   TIME AT END OF THE LOAD STEP. . . . . . . . . .  2.0000
   AUTOMATIC TIME STEPPING . . . . . . . . . . . .    ON
      INITIAL NUMBER OF SUBSTEPS . . . . . . . . .     1
      MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . .    10
      MINIMUM NUMBER OF SUBSTEPS . . . . . . . . .     1
   MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . .    15
   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO
   TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT)
   CONVERGENCE CONTROLS
      LABEL   REFERENCE    TOLERANCE  NORM     MINREF
       HEAT    0.000       0.1000E-03   2     0.1000E-05
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT
   DATABASE OUTPUT CONTROLS
      ITEM     FREQUENCY   COMPONENT
       ALL       NONE
      NSOL        ALL
      RSOL        ALL
      EANG        ALL
      VENG        ALL
      FFLU        ALL
      CONT        ALL
      NLOA        ALL
      MISC        ALL


 SOLUTION MONITORING INFO IS WRITTEN TO FILE= file.mntr
 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS HAS BEEN MODIFIED
  TO BE, NEQIT = 1000, BY SOLUTION CONTROL LOGIC.

 RADIOSITY SOLVER CALCULATION
 ENCLOSURE NUMBER=   1
 RADIOSITY SOLVER CONVERGED AFTER    1 ITERATIONS
 TIME OF RADIOSITY SOLVER FOR ENCLOSURE=  0.202894E-03
 RAD FLUX CONVERGENCE VALUE=  0.108870E-03 CRITERION=  0.100000E-03


     HT FLOW CONVERGENCE VALUE=  0.1129E+05  CRITERION=   1.132
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=   30.00
     HT FLOW CONVERGENCE VALUE=  0.1099E-08  CRITERION=  0.9169E-01 <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1

 RADIOSITY SOLVER CALCULATION
 ENCLOSURE NUMBER=   1
 RADIOSITY SOLVER CONVERGED AFTER   51 ITERATIONS
 TIME OF RADIOSITY SOLVER FOR ENCLOSURE=  0.263095E-02
 RAD FLUX CONVERGENCE VALUE=  0.176949     CRITERION=  0.100000E-03

     HT FLOW CONVERGENCE VALUE=   31.78      CRITERION=  0.9632E-01
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  -1.134
     HT FLOW CONVERGENCE VALUE=  0.9349E-09  CRITERION=  0.9668E-01 <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2

 RADIOSITY SOLVER CALCULATION
 ENCLOSURE NUMBER=   1
 RADIOSITY SOLVER CONVERGED AFTER   21 ITERATIONS
 TIME OF RADIOSITY SOLVER FOR ENCLOSURE=  0.116801E-02
 RAD FLUX CONVERGENCE VALUE=  0.665886E-02 CRITERION=  0.100000E-03

     HT FLOW CONVERGENCE VALUE=   1.853      CRITERION=  0.9890E-01
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.6860E-01
     HT FLOW CONVERGENCE VALUE=  0.8175E-09  CRITERION=  0.9893E-01 <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   3

 RADIOSITY SOLVER CALCULATION
 ENCLOSURE NUMBER=   1
 RADIOSITY SOLVER CONVERGED AFTER    4 ITERATIONS
 TIME OF RADIOSITY SOLVER FOR ENCLOSURE=  0.396967E-03
 RAD FLUX CONVERGENCE VALUE=  0.506736E-03 CRITERION=  0.100000E-03

     HT FLOW CONVERGENCE VALUE=  0.5470      CRITERION=  0.9983E-01
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1926E-01
     HT FLOW CONVERGENCE VALUE=  0.1099E-08  CRITERION=  0.9983E-01 <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   4

 RADIOSITY SOLVER CALCULATION
 ENCLOSURE NUMBER=   1
 RADIOSITY SOLVER CONVERGED AFTER    1 ITERATIONS
 TIME OF RADIOSITY SOLVER FOR ENCLOSURE=  0.216961E-03
 RAD FLUX CONVERGENCE VALUE=  0.109888E-03 CRITERION=  0.100000E-03

     HT FLOW CONVERGENCE VALUE=  0.2185      CRITERION=  0.1002
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.7222E-02
     HT FLOW CONVERGENCE VALUE=  0.1194E-08  CRITERION=  0.1002     <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5

 RADIOSITY SOLVER CALCULATION
 ENCLOSURE NUMBER=   1
 RADIOSITY SOLVER CONVERGED AFTER    1 ITERATIONS
 TIME OF RADIOSITY SOLVER FOR ENCLOSURE=  0.441074E-04
 RAD FLUX CONVERGENCE VALUE=  0.102317E-03 CRITERION=  0.100000E-03

     HT FLOW CONVERGENCE VALUE=  0.1112      CRITERION=  0.1002
    EQUIL ITER   6 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4308E-02
     HT FLOW CONVERGENCE VALUE=  0.9922E-09  CRITERION=  0.1002     <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   6

 RADIOSITY SOLVER CALCULATION
 ENCLOSURE NUMBER=   1
 RADIOSITY SOLVER CONVERGED AFTER    1 ITERATIONS
 TIME OF RADIOSITY SOLVER FOR ENCLOSURE=  0.500679E-04
 RAD FLUX CONVERGENCE VALUE=  0.884660E-04 CRITERION=  0.100000E-03

 RADIOSITY FLUX CONVERGED AFTER ITERATION=    7 SUBSTEP=    1

     HT FLOW CONVERGENCE VALUE=  0.2106      CRITERION=  0.1000
    EQUIL ITER   7 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.8012E-02
     HT FLOW CONVERGENCE VALUE=  0.9838E-09  CRITERION=  0.1000     <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   7
 *** LOAD STEP     2   SUBSTEP     1  COMPLETED.    CUM ITER =     10
 *** TIME =   2.00000         TIME INC =   1.00000
 ****************************************************
 *************** FINISHED SOLVE FOR LS 2 *************

 *GET  _WALLASOL  FROM  ACTI  ITEM=TIME WALL  VALUE=  7.70611111

 FINISH SOLUTION PROCESSING


 ***** ROUTINE COMPLETED *****  CP =         2.386



 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     07:42:23  MAY 06, 2024 CP=      2.388

 --Steady-State Thermal



          ***** MAPDL RESULTS INTERPRETATION (POST1) *****

 *** NOTE ***                            CP =       2.388   TIME= 07:42:23
 Reading results into the database (SET command) will update the current
 displacement and force boundary conditions in the database with the
 values from the results file for that load set.  Note that any
 subsequent solutions will use these values unless action is taken to
 either SAVE the current values or not overwrite them (/EXIT,NOSAVE).

 Set Encoding of XML File to:ISO-8859-1

 Set Output of XML File to:
     PARM,     ,     ,     ,     ,     ,     ,     ,     ,     ,     ,     ,
         ,     ,     ,     ,     ,     ,     ,

 DATABASE WRITTEN ON FILE  parm.xml

 EXIT THE MAPDL POST1 DATABASE PROCESSOR


 ***** ROUTINE COMPLETED *****  CP =         2.390



 PRINTOUT RESUMED BY /GOP

 *GET  _WALLDONE  FROM  ACTI  ITEM=TIME WALL  VALUE=  7.70638889

 PARAMETER _PREPTIME =     0.000000000

 PARAMETER _SOLVTIME =     0.000000000

 PARAMETER _POSTTIME =     1.000000000

 PARAMETER _TOTALTIM =     1.000000000

 *GET  _DLBRATIO  FROM  ACTI  ITEM=SOLU DLBR  VALUE=  1.11855670

 *GET  _COMBTIME  FROM  ACTI  ITEM=SOLU COMB  VALUE= 0.412933456E-02

 *GET  _SSMODE   FROM  ACTI  ITEM=SOLU SSMM  VALUE=  2.00000000

 *GET  _NDOFS    FROM  ACTI  ITEM=SOLU NDOF  VALUE=  3373.00000

 /FCLEAN COMMAND REMOVING ALL LOCAL FILES
 --- Total number of nodes = 3566
 --- Total number of elements = 786
 --- Element load balance ratio = 1.1185567
 --- Time to combine distributed files = 4.129334557E-03
 --- Sparse memory mode = 2
 --- Number of DOF = 3373

 EXIT MAPDL WITHOUT SAVING DATABASE


 NUMBER OF WARNING MESSAGES ENCOUNTERED=          1
 NUMBER OF ERROR   MESSAGES ENCOUNTERED=          0

+--------------------- M A P D L   S T A T I S T I C S ------------------------+

Release: 2024 R1            Build: 24.1       Update: UP20231106   Platform: LINUX x64
Date Run: 05/06/2024   Time: 07:42     Process ID: 9152
Operating System: Ubuntu 20.04.6 LTS

Processor Model: AMD EPYC 7763 64-Core Processor

Compiler: Intel(R) Fortran Compiler Classic Version 2021.9  (Build: 20230302)
          Intel(R) C/C++ Compiler Classic Version 2021.9  (Build: 20230302)
          Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122
          BLAS Library supplied by AMD BLIS

Number of machines requested            :    1
Total number of cores available         :    8
Number of physical cores available      :    4
Number of processes requested           :    4
Number of threads per process requested :    1
Total number of cores requested         :    4 (Distributed Memory Parallel)
MPI Type: INTELMPI
MPI Version: Intel(R) MPI Library 2021.10 for Linux* OS


GPU Acceleration: Not Requested

Job Name: file0
Input File: dummy.dat

  Core                Machine Name   Working Directory
 -----------------------------------------------------
     0                f8cd179a5ae7   /github/home/.mw/Application Data/Ansys/v241/AnsysMech4503/Project_Mech_Files/SteadyStateThermal
     1                f8cd179a5ae7   /github/home/.mw/Application Data/Ansys/v241/AnsysMech4503/Project_Mech_Files/SteadyStateThermal
     2                f8cd179a5ae7   /github/home/.mw/Application Data/Ansys/v241/AnsysMech4503/Project_Mech_Files/SteadyStateThermal
     3                f8cd179a5ae7   /github/home/.mw/Application Data/Ansys/v241/AnsysMech4503/Project_Mech_Files/SteadyStateThermal

Latency time from master to core     1 =    2.226 microseconds
Latency time from master to core     2 =    2.177 microseconds
Latency time from master to core     3 =    1.961 microseconds

Communication speed from master to core     1 =  8949.13 MB/sec
Communication speed from master to core     2 = 12135.87 MB/sec
Communication speed from master to core     3 = 12967.26 MB/sec

Total CPU time for main thread                    :        1.1 seconds
Total CPU time summed for all threads             :        2.9 seconds

Elapsed time spent obtaining a license            :        0.3 seconds
Elapsed time spent pre-processing model (/PREP7)  :        0.0 seconds
Elapsed time spent solution - preprocessing       :        0.1 seconds
Elapsed time spent computing solution             :        0.4 seconds
Elapsed time spent solution - postprocessing      :        0.0 seconds
Elapsed time spent post-processing model (/POST1) :        0.0 seconds

Equation solver used                              :            Sparse (symmetric)
Equation solver computational rate                :       12.9 Gflops
Equation solver effective I/O rate                :       12.4 GB/sec

Sum of disk space used on all processes           :        5.7 MB

Sum of memory used on all processes               :      182.0 MB
Sum of memory allocated on all processes          :     2880.0 MB
Physical memory available                         :         31 GB
Total amount of I/O written to disk               :        0.0 GB
Total amount of I/O read from disk                :        0.0 GB

+------------------ E N D   M A P D L   S T A T I S T I C S -------------------+


 *-----------------------------------------------------------------------------*
 |                                                                             |
 |                               RUN COMPLETED                                 |
 |                                                                             |
 |-----------------------------------------------------------------------------|
 |                                                                             |
 |  Ansys MAPDL 2024 R1         Build 24.1         UP20231106    LINUX x64     |
 |                                                                             |
 |-----------------------------------------------------------------------------|
 |                                                                             |
 |  Database Requested(-db)     1024 MB     Scratch Memory Requested   1024 MB |
 |  Max Database Used(Master)      3 MB     Max Scratch Used(Master)     44 MB |
 |  Max Database Used(Workers)     1 MB     Max Scratch Used(Workers)    44 MB |
 |  Sum Database Used(All)         6 MB     Sum Scratch Used(All)       176 MB |
 |                                                                             |
 |-----------------------------------------------------------------------------|
 |                                                                             |
 |        CP Time      (sec) =          2.948       Time  =  07:42:24          |
 |        Elapsed Time (sec) =          4.000       Date  =  05/06/2024        |
 |                                                                             |
 *-----------------------------------------------------------------------------*

Project tree#

def print_tree(node, indentation=""):
    print(f"{indentation}├── {node.Name}")

    if (
        hasattr(node, "Children")
        and node.Children is not None
        and node.Children.Count > 0
    ):
        for child in node.Children:
            print_tree(child, indentation + "|  ")


root_node = DataModel.Project
print_tree(root_node)
├── Project
|  ├── Model
|  |  ├── Geometry Imports
|  |  |  ├── Geometry Import
|  |  ├── Geometry
|  |  |  ├── Part4
|  |  |  |  ├── Part4
|  |  |  ├── Part3
|  |  |  |  ├── Part3
|  |  |  ├── Part2
|  |  |  |  ├── Part2
|  |  |  ├── Part1
|  |  |  |  ├── Part1
|  |  ├── Construction Geometry
|  |  |  ├── Path
|  |  |  ├── Surface
|  |  ├── Materials
|  |  |  ├── Structural Steel
|  |  ├── Coordinate Systems
|  |  |  ├── Global Coordinate System
|  |  |  ├── Coordinate System
|  |  |  ├── Coordinate System 2
|  |  ├── Remote Points
|  |  ├── Connections
|  |  |  ├── Contacts
|  |  |  |  ├── Contact Region
|  |  |  |  ├── Contact Region 2
|  |  |  |  ├── Contact Region 3
|  |  ├── Mesh
|  |  ├── Named Selections
|  |  |  ├── Face1
|  |  |  ├── Face2
|  |  |  ├── Face3
|  |  |  ├── Body1
|  |  ├── Steady-State Thermal
|  |  |  ├── Initial Temperature
|  |  |  ├── Analysis Settings
|  |  |  ├── Temperature
|  |  |  ├── Temperature 2
|  |  |  ├── Radiation
|  |  |  ├── Solution
|  |  |  |  ├── Solution Information
|  |  |  |  ├── Temperature
|  |  |  |  ├── Temperature 2
|  |  |  |  ├── Temperature 3
|  |  |  |  ├── Temperature 4
|  |  |  |  ├── Total Heat Flux
|  |  |  |  ├── Directional Heat Flux
|  |  |  |  ├── Thermal Error
|  |  |  |  ├── Temperature Probe
|  |  |  |  ├── Heat Flux Probe
|  |  |  |  ├── Reaction Probe
|  |  |  |  ├── Radiation Probe

Cleanup#

Save project

app.save(os.path.join(cwd, "steady_state_thermal.mechdat"))
app.new()

Delete example files

delete_downloads()
True

Total running time of the script: (0 minutes 20.786 seconds)

Gallery generated by Sphinx-Gallery